

White Paper

by Igor Mihaljevic

X PlatformÔ	

Architecting and
Building a Real-Time

Ad Bidding System	

The X PlatformÔ -	Architecting and Building a Real-Time Ad Bidding System	

	 Page	1
Copyright © 2017 Neeve Research, LLC. All Rights Reserved

Table of Contents
Table	of	Contents	..	1	

Introduction	...	2	

Real-Time	Ad	Bidding:	A	Brief	Introduction	...	2	

Problems	with	Prior	Solutions	...	3	

The	New	Approach:	Message-Driven	In-Memory	Ad	Bidding	System	on	X	Platform	(TM)
...	5	

Benchmarks	..	7	

Problems	Revisited:	How	the	X	PlatformTM	Solved	Them	..	9	

Future	Considerations	...	11	

Conclusion	..	12	

References	...	12	

	

	

About	Neeve	Research		

Neeve	Research	offers	the	X	Platform™,	an	industry	first,	memory-oriented,	multi-agent	application	platform	for	I/O	
intensive,	message	driven	applications.	The	X	Platform™	catalyzes	enterprise	agility	by	allowing	developers	to	write	
plumbing-free	business	logic	on	a	platform	that	seamlessly	injects	fault	tolerance	with	zero	data	loss	and	near	linear	
horizontal	 scalability	while	exhibiting	extreme	performance	characteristics.	The	X	Platform™	pioneers	 the	use	of	
memory-oriented	 computing,	 advanced	 messaging,	 and	 decoupled	 enterprise	 data	 management	 to	 enable	 no-
compromise	computing	from	a	performance,	scalability,	agility,	and	reliability	standpoint.	The	X	Platform™	is	running	
mission	 critical	 applications	 at	 Fortune	 500	 securities	 trading,	 resort,	 and	 gaming	 corporations.	 For	 additional	
information	visit:	http://www.neeveresearch.com.

About	Kode41	

Kode41	is	a	software	development	vendor	with	a	project	management	office	in	San	Francisco,	CA	and	an	engineering	
office	 in	Novi	Sad,	Serbia.	Kode41	specializes	 in	 the	development	of	 front-end	 (AngularJS,	ReactJS)	and	back-end	
(Java,	Python)	components	for	complex	software	systems.	For	more	information,	visit	http://kode41.com/	or	contact	
Kode41	at	info@kode41.com.

The X PlatformÔ -	Architecting and Building a Real-Time Ad Bidding System	

	 Page	2
Copyright © 2017 Neeve Research, LLC. All Rights Reserved

Introduction
In the Kode41 portfolio, there are several projects comprising real-time ad exchanges and
trading platforms for ad campaigns, built on a Java VM. The goal of this white paper is to give
an introduction on ad bidding systems, our experiences developing them in Java, problems
encountered, and how we are solving them with our newest design approach using X
PlatformTM by Neeve Research LLC [1].

Real-Time Ad Bidding: A Brief Introduction
Real-time Bidding (RTB) is a way of transacting media that allows an individual ad impression
to be put up for bid in real-time. This is done through a programmatic on-the-spot auction,
which is similar to how financial markets operate. RTB allows for Addressable Advertising;
the ability to serve ads to consumers directly based on their demographic, psychographic, or
behavioral attributes [2].

To get an overview on today’s online advertisement placement, we will observe what happens
in the typical ad serving system when an end-user is browsing and the page loads with a banner
ad placeholder.

Illustration 1 Real-Time Ad Serving System

When the user’s page loads, it contains an URL through which the ad should be retrieved.
This URL points to the publisher’s ad server. The ad server may define rules on which ad is
to be served. For instance, if there is reserved advertisement space that an advertiser bought
directly from the publisher, the ad will be served directly from the ad server and the process

Publisher
Content	Server

Publisher	Ad
Server Supply	Side

Platform	(SSP)
Ad

Exchange

Ad
Exchange

Demand	Side
Platform	(DSP)

DSP

DSP

DSP

Browser

Ad	Server

Agency

Brand

User

Data
Management
Platform	(DMP)

The X PlatformÔ -	Architecting and Building a Real-Time Ad Bidding System	

	 Page	3
Copyright © 2017 Neeve Research, LLC. All Rights Reserved

ends. If the ad space is not reserved, the ad server may contact the Supply-Side Platform (SSP)
and offer to sell the ad space. The SSP may hold some data on user’s behavior and interests
to aid with the targeted advertisement. The SSP sends an ad request to the ad exchange that is
appended with any additional useful information about the user and the publisher, such as
content keywords.

The ad exchange, on receiving the ad request, search the Data Management Platform (DMP)
for any information about the visitor, and then auctions this ad opportunity. The ad exchange
will send bid requests to potential buyers, along with any available visitor information. The
buyers are Demand-Side Platforms or other ad exchanges. The bidders may also pre-cache
bids in bulk on the ad exchange. This works like setting an automatic buy/sell on a stock
exchanges. The trade will execute when certain conditions are met. Conditions may include
data about the end-user such as interests, age, or data on the publisher’s current served content
such as keywords. Bidders typically must respond within half of total time limit for ad
exchange response.

Once the ad exchange receives the responses it does the following:

1. Determines the winner.

2. Debits the winner’s account for price of bid.

3. Sends the win notification to the bidder.

4. Sends a response to the SSP with an URL for retrieving the ad. The ad exchange may
get this URL either initially with the response of bid request, or in response to a win
notification sent to the bidder.

The SSP passes the ad URL to the publisher’s ad server and the ad server notifies the user’s
browser on how to retrieve the ad stored on the advertiser’s ad server.

For small publishers that use a third party SSP like Google Ad Sense, the publisher ad server
may not exist. An ad request may be sent directly from the browser to the SSP.

Problems with Prior Solutions
As is evident from the very nature of ad bidding, performance, reliability and scalability are all
very important.

• Performance needs to be low enough that an ad bid is resolved within a low enogh
time that is imperceptible to the user. Additionally, there are several spaces on the
browser page that are concurrently being bid for and, therefore, the system needs to

The X PlatformÔ -	Architecting and Building a Real-Time Ad Bidding System	

	 Page	4
Copyright © 2017 Neeve Research, LLC. All Rights Reserved

support high concurrency and throughputs while still ensuring a low, imperceptible bid
resolution latency.

• Reliability is key to ensure that there are no requests or data is lost on failures to ensure
a consistent user experience and accurate bid resolution. This reliability needs to be
encured not only in the context of a single component but also across various
components that are interacting in the overall bid resolution flow.

• Finally, such systems exhibit spiky load profiles and therefore need to possess
mechanisms to scale horizontally to absorb higher loads.

Achieving these non-functional SLAs in totaliy is very complex and requires complex
programming at a system level. This complexity results in an overall increase in the risk profile
of the system and compromises functional agility by taking time away from the functional
aspects of such systems.

Some of the key problem areas with prior implemnetations of ad bidding systems include

• Build Everything from Scratch – To achieve maximum performance, we had to
develop highly customized low level I/O and multi-threading libraries. We could not
use heavy Servlet containers to do HTTP, O/R mappers to model and manage data
persistence, or bloated serialization libraries which put load on CPU and create garbage
in-memory.

• Concurrency was Difficult to Achieve – We had to design and deal with multi-
threading at low-level.

• Scaling is Difficult to Achieve – This comes from the complicated concurrency.
Nothing is supported by the infrastructure, it all had to be written by us.

• Reliability was Difficult to Achieve – Replicating services for high availability
required custom design and special planning.

• Storage is the Bottleneck – Reliability of operation, and integrity of data is based on
persistent data storage. We have worked with several commonly available SQL and
NoSQL systems, and the storage is always the point of contention. No matter how well
we optimize our application this is a concern. We rely heavily on remote cache, but
even using cache doesn’t solve it, since some data must be written for recovery and
other purposes.

• Real-Time Computing and Garbage Collection Don’t Work Well Together – We
had issues with Java GC pauses, which degrade performance of the system. Most of
garbage was caused by serialization/deserialization.

• Complicated Setup for Development – Setting up the development environment
was tedious, especially if developers needed a full stack on their box. With some of the

The X PlatformÔ -	Architecting and Building a Real-Time Ad Bidding System	

	 Page	5
Copyright © 2017 Neeve Research, LLC. All Rights Reserved

NoSQL software, it wasn’t even possible to fully test everything without running a
three-machine cluster. Also, every component needed setup and configuration.

• Complicated DevOps – We ended up with many different components to setup and
configure. There was no infrastructure for deploying the application itself. Since many
of the servers have different roles, this required different kinds of management –
database servers, cache servers, application servers, etc.

• Complicated Hardware and Network Topology from Project Start – Today’s
organizations are very cost-aware. They need a way to reduce cost and scale as their
business grows. Lowering the development and production cost by using developer
workstations and commodity hardware was often difficult. For example, setting up an
Apache Cassandra cluster for storage requires at least three servers and five servers is
the recommended minimum.

• Cost of Development – We had greater engineer effort because we had to spend
resources developing not just the business logic, but also all the infrastructure running
it.

The New Approach: Message-Driven In-Memory Ad
Bidding System on X Platform (TM)

For this new project, we selected The X Platform™ because it is a general purpose platform
for hyper-distributed, multi-agent applications. X Platform based agents regularly process 100s
of thousands of transactions per second in single to double digit microsecond level latencies
with linear horizontal scalability and full recoverability with zero loss on process, machine,
network and data center failures. All of this with centralized deployment management
including configuration, command-n-control, monitoring, versioning, upgrade with zero
service interruption and drill down capabilities for troubleshooting.

We found that the X Platform™ is powered by a key innovation that centers around the use of
in-memory computing in a unique manner that eliminates the boundaries between application logic, messaging,
state management and transaction processing. It integrates them in a manner that allowed us to author
application logic, manage state and communicate with other agents using “plain old Java
objects” in an easy, fully integrated and transactional manner without having to concern
ourselves with the non-functional aspects of the applications. The platform allowed us to
author application logic using Java, manage state using POJOs assuming memory is durable and
communicate with other agents using POJOs in a “fire-n-forget” manner assuming exactly once
delivery semantics. By eliminating the complexities of state management and messaging and
making them completely technology agnostic, and allowing our development to focus

The X PlatformÔ -	Architecting and Building a Real-Time Ad Bidding System	

	 Page	6
Copyright © 2017 Neeve Research, LLC. All Rights Reserved

exclusively on application logic, we foundusing this platform for an ad bidding engine had
some key advantages.

By leveraging the The X Platform™ we architected the ad bidding product as a collection of
micro applications as depicted in the illustration below.

We decided to build a single end-to-end system which interfaces with external clients via
HTTP/REST/JSON. It is composed of four micro applications that communicate with each
other over a message bus. Internal communication is done with efficient a binary protocol
provided by the platform. Each micro application is replicated for high availability and
partitioned for horizontal scaling.

A brief description of each micro application is as follows:

• The SSP containing data on user’s behavior and interests are now loaded in-
memory. The SSP sends an ad request to the ad exchange that is appended with
any additional useful information about the user and the publisher, such as
content keywords.

• The ad exchange processes bid requests adding any available visitor information
from the DMP, checks for pre-cached bids and notifies the DSP.

• The DMP containing user tracking data and hundreds of millions of entries is
now loaded in-memory, with application state and is very fast.

• The DSP manages multiple ad buyers, who open accounts and create ad

campaigns on the DSP. Since the ad exchange and DSP are now part of the
same system, the bidding algorithm is simplified.

Illustration 2 Ad Bidding System Built on The X Platform™

The X PlatformÔ -	Architecting and Building a Real-Time Ad Bidding System	

	 Page	7
Copyright © 2017 Neeve Research, LLC. All Rights Reserved

The following is the sequence diagram of the main message flow that facilitates the ad bidding.
From the point of receiving an ad request from the client to the delivery of the response there
are 8 message hops and a win notification that is sent to the DSP concluding the auction. A
DSP is managing multiple ad campaigns.

Illustration 3 Sequence Diagram of RTB Message Flow

Additionally, a copy of these micro applications can be found at:
https://github.com/neeveresearch/nvx-app-ad-bidding-engine.git

Benchmarks
For testing performance, the system is deployed on 3 physical servers with dual 10 core CPU
3GHz and 96 GB RAM. The messaging provider is the X Platform™ Solace Messaging
Router. The ad exchange application is deployed as two instances: a primary and a backup.
The connection server is replaced by a driver micro application which simulates large traffic.
Test runs as follows:

• DSP instance manages 1,000 campaigns.

SSP Ad	Exchange DSPDMP

Connection
Server

WinningBidNotification

VisitorDataLookup

AdRequest
ClientAdRequest

ClientAdResponse

BidResponse

BidRequest

AdResponse

VisitorDataLookupResponse

The X PlatformÔ -	Architecting and Building a Real-Time Ad Bidding System	

	 Page	8
Copyright © 2017 Neeve Research, LLC. All Rights Reserved

• We are sending 100,000 ad requests at rate of 1,000 requests/s.

• DMP will do at least one read and one write in the state for each ad request.

• DSP will search all campaigns in the state for bid candidates on each ad request (since
all campaigns are competing independently).

• At some point, we will intentionally kill the primary ad exchange instance.

• We should see that failover to backup will redeliver any messages that ended up on
primary instance at the moment of failure with no data loss.

• We expect that node failure will cause negligible delay to the flow.

Our findings are shown below. The table shows the processing and messaging times in the
message flow. All times are below 1 millisecond. The bottleneck is the DSP because it is
computationally most complex. It searches all 1000 campaigns at every bid request.

Sequence Time (μs)

SSP Request 62
Ad Exchange - DMP 40
DMP Visitor Lookup 24
Ad Exchange - Bid 33
DSP Bid Response 463
Ad Exchange – SSP 26
SSP – Test Driver 30

Table 1 Processing times in the message flow

The chart below shows the average for total ad request to response times for the entire
duration of the test. It is around 1.4 milliseconds. When we add up times from the table above,
we can see that they do not add up to 1.4 ms. There is slight overhead in the messaging
provider due to the way it is configured in the lab. Meaning, there is a potential for even better
performance with slight adjustment to the setup. We should also note that these times are for
a message flow with 8 message hops. Given the industry norm, the achieved performance is
outstanding even as it is now. The chart also reflects the spike up to 68 ms when we killed the
ad exchange primary instance. The X Platform ™ provided up to 1 second failover (the time
needed to redeliver any messages that went to failing node). The maximum request - response
time was around 900 milliseconds.

The X PlatformÔ -	Architecting and Building a Real-Time Ad Bidding System	

	 Page	9
Copyright © 2017 Neeve Research, LLC. All Rights Reserved

Chart 1 Average Ad Request – Response time (milliseconds)

Knowing that the duration is 1 second, that we have 1000 requests, the average is 68
milliseconds. The maximum latency is at 900 milliseconds. We can now calculate the worst
case scenario for the number of requests that broke the service level agreement of 100ms to
delivery. The worst case scenario would be to assume that all delayed responses are at the
maximum of 900ms and that the all best response times are at the average of 1.4 ms. This
gives us ~73 responses that are outside of SLA.

An instance failure caused a delay with up to ~7% (73 out of 1000) of responses outside of
SLA, and only during 1 second. Compared to the total traffic, this is negligible. Furthermore,
the guaranteed delivery ensured that we still get the delayed messages, making it very easy to
take any corrective action and notify other applications of expired ad impressions.

Problems Revisited: How the X PlatformTM Solved
Them
Here is how problems with our previous project were overcome by leveraging the X
Platform™:

• No “Write from Scratch” – There is no dealing with I/O, sockets or threads directly
to achieve real-time performance. Serialization is built-in and highly efficient. A fast
and reliable storage is built-in. The X Platform™ easily exceeds ad serving/bidding
time constraints 100/50ms by orders of magnitude, without any additional designing

0

10

20

30

40

50

60

70

80

The X PlatformÔ -	Architecting and Building a Real-Time Ad Bidding System	

	 Page	10
Copyright © 2017 Neeve Research, LLC. All Rights Reserved

and planning. The X Platform™ also provides a modeling language and a code
generator. The data model and messages can be represented using XML, from which
Java classes are generated. The X Platform™ left us only dealing with three aspects:
configuration, pure business logic, and the data model.

• Messaging is Simple – Apart from configuring the topic/channels, the developer
only deals with sending messages and writing handlers for them. Everything else is
managed by the platform, and business logic is ignorant of any messaging mechanism
internals.

• Concurrency Model is Built In – The X Platform™ programming model is like the
actor model. This actor model covered most of our use cases. To plan for concurrency,
we need to partition data in chunks. Chunks can be managed and accessed
independently. The X Platform™ module called Talon compartmentalizes these
chunks when the application state is being accessed, so that when there are new events,
they will be processed in sequence. Access to application state is always thread-safe.

• Horizontal Scaling was Simple – If application state is well partitioned, Talon (TM)
will provide as much concurrency as there are available resources and instances of the
application.

• Reliability is Simple – Talon manages replication for high availability. For the most
part, it is just about running additional instances of the same Talon application.

• Storage is Fast – No bottlenecks on write. Data is in memory, replicated for high
availability. Access is fast. Events can be processed in microseconds, even when state
needs update. State persistence is managed by X Platform automatically. Business logic
need not do anything explicitly to persist data, apart from mutating application state.

• No Remote Cache – Application state is in-memory and in process, so access times
are very fast.

• No Garbage Collection Pauses – By abiding by X PlatformTM development
guidelines, we managed to avoid garbage collection pauses and high CPU loads. X
Platform provides object pooling, and can recycle object instances, thus reducing new
memory allocations.

• Easy Setup for Development – Since there is (are) no database servers, no remote
cache servers, or other components, it is very easy to set up the development box and
get everything running on a single machine. It is also easy to test very complex systems
on a single machine. When starting a new project, only a few steps are needed – set up
a license file and get the talon example app running. From there we just implement the
business logic, and add any configuration needed to run it.

• Simplified DevOps – For the most part, our servers look identical now. They all run
the same software, and are managed in the same way. Deployments are simplified by

The X PlatformÔ -	Architecting and Building a Real-Time Ad Bidding System	

	 Page	11
Copyright © 2017 Neeve Research, LLC. All Rights Reserved

using Robin Server (TM) which acts as a container and remote deployment tool for X
Applications. The X Platform is highly introspective because it provides operation
statistics, both for the business logic and for internal X PlatformTM components
involved in processing an event. There is a graphical representation with Lumino (TM)
server, so that system can be monitored from a web browser. This is especially
important for our speed requirements – to be able to measure message flow timing,
and profile for possible contention points.

• Simplified Hardware and Network Topology – It is possible to get a basic system
running with less hardware, which is of interest to startup businesses that don’t have a
big cloud infrastructure.

• Cost of Development is Reduced – Since we focus on business logic only, and not
on the platform that runs it, we can reduce development costs and delivery times.

Future Considerations
For our next deployment, we plan to split the system into separate products and expose their
API through the standardized OpenRTB protocol by iab. [2]. This means separating each
micro application and then interfacing them via HTTP. Doing this enables us to interface with
third party systems. For example, the DSP alone could participate in bidding on Google’s
DoubleClick (TM). Exposing ad exchange as a standalone product enables auctioning of the
ad space to third party bidding systems. Interfacing incoming traffic via HTTP is possible by
using either a module in the X Platform™ referred to as the Eagle server or writing a custom
connection server and implementing bus protocol. Outbound HTTP is possible via custom
HTTP client or by mechanism provided by The X Platform™ to send message as HTTP
directly from micro application.

Illustration 4 Ad Exchange and DSP as Separate Platforms

X	Platform	DSP

«Talon	App»
DSP	Ad	Exchange	

Application	
Instances

Connection	Server	
Instances

«Talon	App»
DSP	Application	

Instances

Message	Bus Message	Bus

Connection	Client

X	Platform	Ad	Exchange

Connection	Server	
Instances

OpenRTB/HTTP

The X PlatformÔ -	Architecting and Building a Real-Time Ad Bidding System	

	 Page	12
Copyright © 2017 Neeve Research, LLC. All Rights Reserved

Conclusion
We find that event driven processing is a very convenient solution for ad serving systems. The
combination of local in-memory transactional data store, message flow-based processing, zero
garbage collection and performant storage and messaging solved our ad bidding timing
requirements. The X PlatformTM provided all of these mechanisms out of the box that made
is very easy to implement a highly performant and resilient ad bidding system.

References
1. X PlatformTM [http://www.neeveresearch.com/]

2. OpenRTB Protocol [https://www.iab.com/guidelines/real-time-bidding-rtb-
project/]

