

Neeve Research LLC 1148 Brace Avenue, San Jose CA 95125

This document introduces the reader to techniques and requirements leveraged by a distrib-
uted architecture for providing real-time processing on big data.

Why Use A Distributed
Architecture for

Real-Time Big Data	

Author: Girish Mutreja

Copyright 2018, Neeve Research LLC All Rights Reserved 2

	

Table of Contents

TABLE	OF	CONTENTS	 2

THE	MODERN	ENTERPRISE	 3

MULTI-AGENT	SYSTEMS	 3

WHY	ENTERPRISES	ARE	MOVING	TO	MULTI-AGENCY	 4

REALIZING	THE	FULL	POTENTIAL	OF	MULTI-AGENCY	 4
Completely take away the Quality-of-Service (QoS) burden 5
Make it easy to author application logic 5
Make it risk-free and non-intrusive to deploy business functionality 6

IN-MEMORY	MULTI-AGENT	PLATFORM	 6
An X PlatformÔ App 7
Model State 7
Model Messages 8
Author logic using Java 8
Build 8
Run 8
Key Takeaways 9

QOS	CHALLENGES	WITH	MULTI-AGENT	SYSTEMS	 9
Performance 9
Storage 10
Messaging & Collaboration 10
Error Handling & Transaction Management 11
System Monitoring 12

SUMMARY	 13

Why Use A Distributed Architecture for Real-Time Big Data

 Copyright 2018, Neeve Research LLC All Rights Reserved 3

The Modern Enterprise
The world of enterprise applications has undergone a dramatic change. Drivers such as glob-
alization, social computing, Omni channel access, round-the-clock computing, and domain-
specific changes have pushed data and transaction processing requirements to levels that were
once considered extreme but are now commonplace. At the same time, application architec-
tures and development practices have evolved to keep pace with the highly dynamic business
and social ecosystem in which these applications operate. This has given rise to significant
computing trends such as cloud computing, micro-service architectures, and FaaS; each of
which are enabling increasingly agile and resilient
application delivery. These trends, in combination
with multi-core processing and more reliable net-
works, are shifting applications from being mono-
lithic to being more network-centric, multi-agent
and distributed. Enterprises that used to be driven
by heavyweight wheel-and-spoke architectures are now enabled by lightweight collaborative
agent architectures where business functionality is developed, deployed, and managed in an
agile, flexible, and continuous manner. X PlatformÔ is a next generation, memory-oriented
platform that not only enables such application architectures but takes them to the next level
of performance, agility, resilience, and scalability. X Platform™ combines in-memory compu-
ting with microservices architecture and next-generation transaction processing to super
charge your data for real-time intelligent transaction processing.

Multi-Agent Systems
Multi-agent systems are comprised of interconnected, reusable software agents. Each agent
performs a specific task and collaborates with other agents to accomplish the overall business
function. These agents are essentially absorbing messages from their surroundings and react-
ing to them with their own messages. Financial trading engines listen for new orders from an
order manager, processes the orders, and dispatch them to the appropriate markets via ex-
change connectivity agents. Apps on our phones listen for messages from our friends and
business associates, which we in turn, process and respond to in the form of additional mes-
sages. E-commerce engines both listen to and serve pricing requests, while simultaneously
propagating informational events to analytical engines for dynamic pricing and yielding. All of
these examples have one thing in common. Their function is driven and accomplished by
collaborating software agents.

Organic evolution is
synonymous with sur-
vival in a continuously

changing environment.

Why Use A Distributed Architecture for Real-Time Big Data

 Copyright 2018, Neeve Research LLC All Rights Reserved 4

Why Enterprises Are Moving to Multi-Agency
This paradigm of decomposing business tasks into multiple collaborating agents is rapidly be-
coming the de facto standard for enterprise software. Such multi-agent systems have several
significant benefits:

 Operational Concerns
• Time to market – They require less time to develop due to functional decomposition,

contract-based collaboration and agent lifecycle independence.
• System resilience – They exhibit higher system resilience due to fault isolation.
• Scalability - Inherently more scalable due to higher concurrency.

While achieving the above concerns provides significant benefits, the real driver of the multi-
agent paradigm is agility and organic growth. Businesses are increasingly dynamic to a point that
enterprise systems need to possess the ability to organically evolve with, and adapt to, the func-
tions they serve. Organic evolution is synonymous with survival in a continuously changing
environment. Being able to evolve organically will allow enterprise systems to not only keep
pace with the ultra-dynamic nature of modern enterprises, but to become even stronger as
they evolve to meet growing needs.
Systems with these capabilities go far beyond the technical and operational goals of time to
market, system resilience, and scalability. Instead, they start serving the enterprise by allowing for
(and even encouraging) continuous adaption - the first step towards enterprise intelligence. It is
these properties that foster innovation.

Realizing the Full Potential of Multi-Agency
Achieving this level of adaptability is not easy. In addition to putting in place the required
developmental practices and fostering the right culture, the technology platform that under-
pins such systems needs to possess one overarching capability: it needs to make it trivial for devel-
opers to author components and snap them in or out without adversely affecting the whole system. It is this
simple yet powerful capability that truly enables a dynamic architecture.

However, this dynamicity must not come at the cost of stability, performance, reliability or any
other quality of service (QoS) concern of the application. The system must be dynamic and
still satisfy stringent service demands. To enable this level of agility, the platform must:

1. Completely take away the QoS burden from the developer

Why Use A Distributed Architecture for Real-Time Big Data

 Copyright 2018, Neeve Research LLC All Rights Reserved 5

2. Make it easy to author application logic
3. Make it risk-free and non-intrusive to deploy business functionality

Completely take away the Quality-of-Service (QoS) burden
Quality of service complexities are more pronounced in multi-agent systems due to their dis-
tributed nature. Some of the key areas that become more complex and have more stringent
SLAs are performance, storage, collaboration, transaction management, error handling, and system monitor-
ing. Why and how each of these areas become less forgiving in distributed systems is covered
later in this paper. For now, it suffices to say it’s very common for development teams to
spend more than 50% of their time working on issues that have nothing to do with the busi-
ness requirements. As these non-functional aspects become harder, developers will spend even more time on
them. Application developers should be focused on the delivering business functions. More focus
on domain-specific problems result in systems keeping pace with the business, more innova-
tion, more revenue, and more robust systems. The platform needs to provide the full gamut
of QoS leaving the developer to author and innovate on relevant and salient aspects of the
applications.

Make it easy to author application logic
Actors in multi-agent systems have application logic, are stateful and are collaboration-aware.
This means that agents send and receive messages to-and-from other agents and remember
their state between messages. Application logic is triggered by inbound messages, state is que-
ried and updated by the application logic, and additional messages are sent out for other agents
to process. In current systems, including cloud applications, developers have to bolt on a messaging
technology, a storage technology, a transaction management technology and a monitoring
technology to the application logic (and configure them to work together) when developing
an agent. This is not easy, and severely hampers the agility and robustness of the agents au-
thored. This is particularly true due to the much higher QoS requirements brought on by
distributed systems. Just as higher-level programming languages were developed to make it
easier to write software programs, multi-agent platforms need to make it easy for developers
to author fully integrated stateful and collaborative behavior into agents. Essentially, the plat-
form should commoditize how agents integrate application logic, state management, and col-
laboration.

Why Use A Distributed Architecture for Real-Time Big Data

 Copyright 2018, Neeve Research LLC All Rights Reserved 6

Make it risk-free and non-intrusive to deploy business functionality
The ability to quickly test out new business functionality without requiring a “stop the world”
release methodology or completely impacting the overall system is paramount. Organizations
can no longer suffer from weekend releases and rollbacks that impact production operations,
customer experience, or data integrity. Enterprise systems need to be available 24x7 – requiring
a new way for maintaining healthy systems.

There cannot be any resistance to deploying or rolling back functionality from production sys-
tems. If there is, the resistance will grind the agility of the system a halt. The platform must
provide the tooling (or integrate with existing tooling) that makes deployments continuous,
smooth, easy, and risk-free.

In-Memory Multi-Agent Platform
Once it is easy to add, modify and test business functionality, remove QoS aspects from de-
velopment concerns, and it is risk-free to deploy components, then the true promise of multi-
agent systems has been realized. X PlatformÔ is such a platform. It is powered by a key innova-
tion that centers around the use of in-memory
computing in a unique manner that eliminates
the boundaries between application logic,
messaging, state management, and transaction
processing. X Platform™ integrates these in a
manner that allows developers to author application logic, manage state and communicate
with other agents using “plain old Java objects”. Developers author applications using Java,
manage state using POJOs, and memory is durable. They communicate with other agents using
POJOs in a “fire-n-forget” manner with exactly once delivery semantics. By taking ownership of the
complexities of state management and messaging, X PlatformÔ allows the developer to focus
exclusively on application logic. This makes it extremely simple to author stateful, collabora-
tive, fully reliable, scalable, and extremely performant applications using Java.

Systems built with X PlatformÔ regularly process hundreds of thousands of transactions-per-
second in single to double-digit microsecond latencies with linear scalability while running in
high-availability mode. Agents built with X Platform™ are running in full availability mode
and are in no danger of failures from process, machine, network, or data losses. As an enter-
prise grade system, X Platform™ is not just for developers. It provides comprehensive

Makes it easy to develop
and “snap” agents in and

out of the system.

Why Use A Distributed Architecture for Real-Time Big Data

 Copyright 2018, Neeve Research LLC All Rights Reserved 7

monitoring and management capabilities with unprecedented insight into both individual com-
ponents and your overall system.

An X PlatformÔ App
To provide some context to the above, let’s illustrate how easy it is to build an application
using X PlatformÔ. For this illustration, we will build a simple application that receives a
message containing a number from an upstream agent, adds the received number to a counter
that it maintains in its state and sends a message outbound to a downstream agent with the
resulting sum.

When authoring such an application using X PlatformÔ, a developer performs the following
functions

1. Model state
2. Model messages
3. Author logic using Java
4. Build, run, control and monitor the application

Model State
First, the developer defines the agent’s state such as the following:

<model>
 ...

 <entities>
 <entity name="Repository">
 <field name="counter" type="Long"/>
 </entity>
 </entities>
</model>

At build time X Platform™ will convert this to POJOs.

Note: X Platform™ also provides an option for the application to work with non-generated
POJOs. In that case, the above step is not needed.

Why Use A Distributed Architecture for Real-Time Big Data

 Copyright 2018, Neeve Research LLC All Rights Reserved 8

Model Messages
Next, the developer defines the messages such as the following:

<model>
 ...
 <messages>
 <message name="Message">
 <field name="value" type="Long"/>
 </message>

 <message name="Event">
 <field name="result" type="Long"/>
 </message>
 </messages>
</model>

At build time X Platform™ will convert this to POJOs.

Author logic using Java
An X PlatformÔ agent is essentially a sophisticated, enterprise grade message processor (as
are agents in multi-agent systems). Therefore, the application logic is essentially a bunch of
message handlers. The following is the message handler for the agent that receives messages
defined above, updates the counter in its state, and sends the resulting value downstream.

 @EventHandler
 public final void onMessage(Message message, Repository repository) {
 repository.setCounter(repository.getCounter() + message.getValue());
 Event event = Event.create();
 event.setResult(repository.getCounter());
 sender.sendMessage(“events”, event);
 }

Build
A developer brings all of this together using a build tool of their choice. X PlatformÔ provides
build tool plugins to generate Java classes from the XML based state and message definitions.
In the above, the Repository, Message and Event classes referenced by the message
handler are generated by X PlatformÔ code generator plugins. The developer works with
them in the message handlers as regular POJOs.

Run
Once built, X PlatformÔ provides advanced tooling to deploy and run the application. The
platform provides extensive configuration and tuning for X Platform™ runtime.

Why Use A Distributed Architecture for Real-Time Big Data

 Copyright 2018, Neeve Research LLC All Rights Reserved 9

Key Takeaways
• X Platform™ makes it easy to author stateful, collaborative application logic and seam-

lessly integrates state management, messaging, transaction processing and application
logic.

• X Platform™ hides all quality-of-service complexities from the developer without
compromising these capabilities:

a. The generated repository is fully durable.
b. The above code will be executed once and exactly once across process, ma-

chine or data center failures resulting in no message or data loss.
c. The above code performs at hundreds of thousands of transactions per sec-

ond with a processing latency in single-digit microseconds.
d. The above code can be scaled horizontally for concurrent processing with

user-defined data affinity.
e. The code is garbage free.

• X Platform™ provides a dashboard from which a user can configure, control, monitor
and even troubleshoot a running system.

QoS Challenges with Multi-Agent Systems
As we discussed before, there are some non-functional complexities that can be more pro-
nounced in multi-agent systems. This is the key reason why the implementation of these ca-
pabilities needs to be delegated to the platform leaving the developer to focus on application
logic. The important areas that one needs to keep in mind in multi-agent systems are as fol-
lows:

• Performance • Error handling
• Storage • Transaction Management
• Collaboration • System Monitoring

Performance
Application performance is always important. However, in multi-agent architectures, the per-
formance of an agent becomes of even greater consequence. This is because, in contrast with
monolithic systems, a business transaction can and generally does span multiple agents. The

more a multi-agent architecture meets its agility goals, the more agents get developed resulting
in longer transaction pipelines. In other words, the more successful a multi-agent architecture

Why Use A Distributed Architecture for Real-Time Big Data

 Copyright 2018, Neeve Research LLC All Rights Reserved 10

is from an agility standpoint, the worse the business transaction performance can become.
This is particularly true with transaction latency and throughput if agents communicate using
synchronous modes of communication. It is critical that individual agent performance be ex-
tremely fast. Generally, if individual agents perform in double-digit microseconds, then one
would expect the business transaction performance should be in single-digit milliseconds. If
agents perform in hundreds of microseconds to single-digit milliseconds, then transaction per-
formance would be in the high tens to hundreds of milliseconds. If agents perform in double-
digit to hundreds of milliseconds, then transaction performance would be expected to be in
seconds. It is critical that agent performance be kept at the lowest possible latency to provide
enough headroom to not compromise on the overall system’s performance.

X PlatformÔ implements several key techniques such as cut-through serialization, off-heap
data storage, transaction pipelining, and memory mapped IO to keep performance in the low
microsecond range.

Storage
Storage becomes important for two primary reasons: transactions and logs. Agents need to
store both their transaction changes and log messages where they can be independently exam-
ined for recovery. When dealing with high performant systems, bottlenecks can be devastating;

therefore storage needs to be as fast and simple as possible. Private
agent storage is highly recommended for maximum agility and per-
formance.

X PlatformÔ implements private in-memory durable storage per
agent. Each agent has a private instance of an in-memory “micro
DB” with quorum based local persistence and asynchronous con-

nectivity to shared enterprise stores. This enables independent schema management and store
administration for maximum performance and agility with data integration to the rest of the
enterprise.

Messaging & Collaboration
In a distributed platform it must be easy for agents to communicate using a variety of interac-
tion patterns including synchronous request-reply, asynchronous request-reply, and event
streaming. Messaging cannot become a bottleneck in the system either. This becomes espe-
cially important as the number of agents in an orchestrated transaction increases. Furthermore,

X PlatformÔ
ensures full

transactional
consistency

Why Use A Distributed Architecture for Real-Time Big Data

 Copyright 2018, Neeve Research LLC All Rights Reserved 11

the mechanism by which one models collaboration between agents should be simple and flex-
ible. For example, it should be simple to model a system with agents communicating using
traditional services with a request-reply based APIs. Then at a later date add the emission of
events from agents and a new set of agents to consume these events. This process should not
take a re-design of the system, or even be considered as a technical challenge. Agents should
be able to collaborate using event streaming over a rich user-controlled topic namespace, or
purely via discoverable business functions (such as in a “function cloud”.) Modeling collabo-
ration between agents in a simple yet flexible manner is a key aspect of building a multi-agent
system that can evolve in an organic manner.

X Platform™ has invented a simple and powerful abstraction to address these issues. It is not
only possible to model who will communicate, but how they communicate as well. The funda-
mental abstractions for communications are channels, and these connect agents in a one-to-
many fashion. Messages are sent and received as POJOs in a fire-n-forget manner through
channels. Channels are simple but powerful and agile. They can be configured to allow for a
system to be used in any of the manners described above and more.

X PlatformÔ implements a messaging provider abstraction layer where one can switch be-
tween providers in a plug-n-play manner without any code change. X PlatformÔ has adapters
for many solutions including Solace, Kafka, ActiveMQ, JMS (generic), X Platform™ native
messaging offering, and others.

Finally, X Platform™ messaging machinery is engineered for extreme performance. It imple-
ments techniques such as cut-through serialization and pipelining for extreme performance
without compromise on reliability.

Error Handling & Transaction Management
Transactions are used to ensure the integrity of the data and the system in the face of excep-
tions and failures. In contrast to monolithic systems in which a business transaction is com-
pletely local to a single process, transactions spanning multiple agents are more complicated.
Many solutions have been presented over the years, the most obvious is to use a distributed
transaction management technique like two-phased commit. These techniques are technically
feasible, but come with significant performance impacts and introduce developmental and
operational complexities.

Why Use A Distributed Architecture for Real-Time Big Data

 Copyright 2018, Neeve Research LLC All Rights Reserved 12

X PlatformÔ ensures full transactional consistency local to an agent with configurable policies
governing how the system should behave in the face of exceptions and failures. X PlatformÔ
relies on guaranteed-eventing and support compensating-transactions. With guaranteed event-
ing, the platform ensures the fire-n-forget semantic offered to an agent. This means that once
a message is sent and the transaction in which the message was sent is deemed successfully
complete, the platform will guarantee eventual delivery to the downstream agents interested
in the event. In the event of a local transaction failure, the platform supports dispatching
compensating transaction to upstream agents to roll back the changes made previously in that
transaction. Both these techniques working in concert result in eventual consistency of the
system in the face of exceptions and failures.

System Monitoring
A robust multi-agent system will encourage the development of additional agents. However,
the more the moving parts in a system, the harder it is to manage, monitor, and troubleshoot
issues. Therefore, it is critical to have a sophisticated, centralized management, monitoring and
troubleshooting tool. Without such a tool, a multi-agent system can get out of control and
become difficult to operate.

X PlatformÔ provides a centralized deployment management and monitoring tool. It is a
sophisticated tool that allows for viewing of statistics, alerts, and lifecycle events. It also ena-
bles agent command-n-control, agent versioning, agent upgrade with zero service loss, trace
log consolidation and drill down facilities for troubleshooting and debugging purposes.

Why Use A Distributed Architecture for Real-Time Big Data

 Copyright 2018, Neeve Research LLC All Rights Reserved 13

Summary
Modern enterprises are rapidly moving from heavyweight, monolithic applications to light-
weight, network-centric multi-agent applications. The shift is due to the increased agility, re-
silience and organic growth that these systems offer. This allows these systems to better keep
pace with the business, develop intelligence for increased information flow and foster greater
innovation in the enterprise. To finally harness the organic nature of multi-agent systems, the
platform that underpins the systems needs to make it easy to author application logic by al-
lowing a developer to seamlessly integrate business logic with messaging, state management
and transaction processing. It must completely isolate the developer from all quality of service
aspects of the application, while at the same time not compromise on them. The platform
must enable simple, risk-free and non-intrusive deployment management. X PlatformÔ from
Neeve Research is such a platform.

